The pigeonhole principle and multicolor Ramsey numbers

نویسندگان

چکیده

A standard proof of Schur's Theorem yields that any $r$-coloring $\{1,2,\dots,R_r-1\}$ a monochromatic solution to $x+y=z$, where $R_r$ is the classical $r$-color Ramsey number, minimum $N$ such complete graph on vertices triangle. We explore generalizations and modifications this result in higher dimensional integer lattices, showing particular if $k\geq d+1$, then $\{1,2,\dots,R_r(k)^d-1\}^d$ $x_1+\cdots+x_{k-1}=x_k$ with $\{x_1,\dots,x_d\}$ linearly independent, $R_r(k)$ analogous number which triangles are replaced by graphs $k$ vertices. also obtain computational results examples case $d=2$, $k=3$, $r\in\{2,3,4\}$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Some Multicolor Ramsey Numbers

The Ramsey number R(G1, G2, G3) is the smallest positive integer n such that for all 3-colorings of the edges of Kn there is a monochromatic G1 in the first color, G2 in the second color, or G3 in the third color. We study the bounds on various 3-color Ramsey numbers R(G1, G2, G3), where Gi ∈ {K3,K3 + e,K4 − e,K4}. The minimal and maximal combinations of Gi’s correspond to the classical Ramsey ...

متن کامل

Multicolor Ramsey Numbers for Paths and Cycles

For given graphs G1, G2, . . . , Gk, k ≥ 2, the multicolor Ramsey number R(G1, G2, . . . , Gk) is the smallest integer n such that if we arbitrarily color the edges of the complete graph on n vertices with k colors, then it is always a monochromatic copy of some Gi, for 1 ≤ i ≤ k. We give a lower bound for k-color Ramsey number R(Cm, Cm, . . . , Cm), where m ≥ 8 is even and Cm is the cycle on m...

متن کامل

A Lower Bound for Schur Numbers and Multicolor Ramsey Numbers

For k ≥ 5, we establish new lower bounds on the Schur numbers S(k) and on the k-color Ramsey numbers of K3. For integers m and n, let [m,n] denote the set {i |m ≤ i ≤ n}. A set S of integers is called sum-free if i, j ∈ S implies i + j 6∈ S, where we allow i = j. The Schur function S(k) is defined for all positive integers as the maximum n such that [1, n] can be partitioned into k sum-free set...

متن کامل

A bound for multicolor Ramsey numbers

The Ramsey number R(G1; G2; : : : ; Gn) is the smallest integer p such that for any n-edge coloring (E1; E2; : : : ; En) of Kp; Kp[Ei] contains Gi for some i, Gi as a subgraph in Kp[Ei]. Let R(m1; m2; : : : ; mn):=R(Km1 ; Km2 ; : : : ; Kmn); R(m; n):=R(m1; m2; : : : ; mn) if mi=m for i=1; 2; : : : ; n. A formula is obtained for R(G1; G2; : : : ; Gn). c © 2001 Elsevier Science B.V. All rights re...

متن کامل

Multicolor Ramsey numbers for triple systems

Given an r-uniform hypergraph H, the multicolor Ramsey number rk(H) is the minimum n such that every k-coloring of the edges of the complete r-uniform hypergraph K n yields a monochromatic copy of H. We investigate rk(H) when k grows and H is fixed. For nontrivial 3-uniform hypergraphs H, the function rk(H) ranges from √ 6k(1 + o(1)) to double exponential in k. We observe that rk(H) is polynomi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Involve

سال: 2022

ISSN: ['1944-4184', '1944-4176']

DOI: https://doi.org/10.2140/involve.2022.15.857